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SUMMARY

In this paper a total linearization method is derived for solving steady viscous free boundary flow problems
(including capillary effects) by the finite element method. It is shown that the influence of the geometrical
unknown in the totally linearized weak formulation can be expressed in terms of boundary integrals. This
means that the implementation of the method is simple. Numerical experiments show that the iterative
method gives accurate results and converges very fast.
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1. INTRODUCTION

In many problems in mechanics and physics the governing partial differential equations are
defined on domains which are not known a priori. The boundaries of these domains are called frec
boundaries and must be determined as part of the solution. This means that the problem, apart
from the usual unknown functions, contains additional geometrical unknowns.

A technologically important category of such free boundary problems is formed by the viscous
free boundary flow problems, which occur, for example, in capillarity, coating and polymer
technology. Because of the non-linear character of free boundary problems, almost all solutions to
be found in the literature are of a numerical nature.

Concerning steady state free boundary problems, three basic approaches to the numerical
solution by the finite element method can be distinguished in the literature:

(1) A fixed mesh is adopted and special techniques are developed to track the free boundary
through the mesh.! A disadvantage of this technique is that, in general, it is only possible to
identify the elements in which the free boundary lies, but not its precise position.
Furthermore, in order to follow the behaviour of the free boundary which undergoes even
moderate changes of position, it is necessary to add numerical detail throughout a much
larger part of the region than may actually be required.
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(2) In the second approach?? a deforming spatial mesh is used and a three-stage iterative cycle is
followed. First, a shape of the free boundary is assumed. Secondly, the boundary value
problem on the resulting domain is solved after disregarding one of the boundary conditions
at the free boundary. Thirdly, the shape of the free boundary is updated using the previously
neglected boundary condition. This iterative cycle is repeated until some desired convergence
criterion is satisfied. This approach suffers from a number of disadvantages. The iterative
cycle often does not converge, and even when it does, being a fixed point type iteration, it
converges slowly. Moreover, a new finite element problem must be solved at each iteration.

(3) The third, more recent approach* ® also involves a deforming mesh but eliminates the
successive iteration between the free boundary position and the field variables by introducing
the position of the nodes at the free boundary directly as degrees of freedom. The non-linear
equations are then solved using a Newton-Raphson (or a quasi-Newton®) iterative
procedure which results in the simultaneous calculation of the position of the free boundary
and the field variables. The advantage of this method is its second-order (or superlinear for
the quasi-Newton method) rate of convergence. A disadvantage is that a complete account of
the variations with respect to the free boundary degrees of freedom must be incorporated into
the Jacobian of the system of equations. These variations, which involve integrals over a large
part of the domain, have a non-local character. This means that the method does not fit into
standard finite clement codes, where the coefficient in the equations of an unknown
belonging to a nodal point is determined completely by contributions over the neighbouring
elements. This makes the implementation of the method relatively difficult. Another
disadvantage is that a new finite element problem must be solved at each iteration.

The aim of this paper is to derive a numerical method, the total linearization method (TLM),
which is much easier to implement than the Newton—Raphson algorithm while retaining its
superior convergence properties. It is similar to References 10 and 11, but in this paper it will be
shown that the influence of the unknown position of the free boundary can be reduced completely
to boundary integrals. This has great advantages for software implementation.

The sequel is restricted to the die—swell problem, which serves as a model case for the TLM.
However, it is possible to apply the TLM to other free boundary problems as well.

In Section 2 the die—swell problem is described and its mathematical formulation is given.
In Section 3 the weak formulation of the problem is derived. This weak formulation is linearized in
Section 4. The numerical method consists of a discretization of this linearized weak formulation, In
Section 5 the numerical results are shown and compared with those available from the literature.

2. MATHEMATICAL FORMULATION

The extrusion of a viscous incompressible jet from a die into an inviscid fluid is of considerable
rheological importance. It is observed that far downstream the height of the extrudate is different
from that of the die. This phenomenon is known as die—swell or extrudate swell.

In this paper it is assumed that the jet is Newtonian and that the flow is steady and two-
dimensional in a domain Q with boundary I" (see Figure 1). Furthermore it is assumed that there
are no external forces.

The governing equations are

0 .
pu foj“‘ = E}}; Ty (momentum equations), (1)

Ouy/0x; =0 (continuity equation), (2)
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Figure 1. Geometry of the die—swell problem

where
T,,= —po,, + 1t Ou; | Ou; (constitutive equation) 3)
1 1 0x; Ox

J

i

is the stress tensor for a Newtonian fluid with dynamic viscosity x4 and constant density p. The
components of the velocity vector are u;, the pressure is denoted by p and J;; is the Kronecker
symbol. At the inlet (width b/2) the velocity distribution is a fully developed Poiseuille flow with
mean velocity U. At the outlet it is supposed that the flow is parallel to the x; axis and that there is
no diffusive outflow of momentum. At the wall the fluid is assumed to satisfy the no-slip condition.
We also assume that the flow is symmetric with respect to the I'; boundary. Thus the boundary
conditions are, apart from those at the free boundary,

at the inlet T';: u; =3U[1 — (2x,/b)?], u, =0, (4a,b)
at the outlet I';: Ty;n,n,=0, u;t; =0, {4c,d)
at the wall T',: u, =0, u, =0, (4e,f)
at the symmetry axis I';; un; =0, Tt =0, (4g,h)

where n; and ¢; are the components of the normai and tangential vector respectively on the
boundary I'. The orientation of the tangential vector is taken to be clockwise.

At the free boundary the conditions for a balance of forces must be fulfilied. These are the traction
conditions for the normal and tangential components of the stress vector. Moreover, in the
stationary situation the free boundary is a streamline, which leads to the kinematic condition for
the velocity. When we assume that the pressure of the surrounding inviscid fluid equals zero, the
boundary conditions at the free boundary Iy are

un; =0 (kinematic condition), (5a)
T;nn=d/R (normal stress condition), (5b)
T;nit;=0 (tangential stress condition), (5¢)

where o is the coefficient of surface tension. The curvature 1/R of the free boundary (R > 0 at points
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of the free boundary where Q is locally concave) is given by

1 d3h dh \27]3/2
E=m/[”<a>] ’ ©

where h(x,) is the distance between the x, axis and the free boundary. Note that the number of
boundary conditions at the free boundary is equal to three instead of two, which would be the case
for a fixed domain problem. This extra boundary condition is necessary because there is an
additional geometrical unknown: the position of the free boundary.

Since the position of the free boundary is determined by the solution of a second-order non-
linear ordinary differential equation, two boundary conditions for the position of the free
boundary are necessary. These boundary conditions are the vanishing slope at the outflow section
and the fixed separation point at the wall:

at the outflow section: dh/dx =0 in P, (7a)
at the wall: h=5/2 in Q. (7b)

It is also possible to prescribe a different boundary condition at the wall; see, for example,
References 12 and 13.

With the characteristic velocity U and the characteristic length b, the following dimensionless
groups can be formed:

the Reynolds number Re defined by
Re=pUb/u ®)
and the capillary number Ca defined by
Ca=uUJo. ]

Computations have been performed for realistic values of the Reynolds and the capillary number,
namely Re < 300 and Ca™ ! < 4-444. For these ranges of the characteristic numbers no oscillatory
solutions are observed.

3. WEAK FORMULATION

In order to solve the equations with the appropriate boundary conditions by the finite element
method, a weak formulation of the probiem must be derived. Multiplication of (1) by test functions
b =(¢,, ¢,)" and integration by parts (Gauss’s theorem) over the domain Q results in the following
weak formulation of the momentum equations:

i o,
g dO = ' n.b. ds — - “Yiq0
p Lw, v j T, ds JT o (10)

for all test functions ¢ which are square integrable over Q together with their first-order derivatives.
The test functions ¢ must also be equal to zero at I', UT; and must have vanishing tangential
component at I', and vanishing normal component at I',. Substitution of the boundary conditions
(4) and (5b, ¢) gives:

0 1 0¢;
o ¢,-u-—u,-dQ=aj éini—ds~f T;;——dQ. 11
J.n ]axj re R Q jaxj an

The order of the derivatives in the first term on the right-hand side of (11) can be reduced by the
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substitution

1 dt;
L% (12)
Rn' ds

and by partial integration over I';. The result is, after substitution of the boundary conditions (7),

1 dg,
J‘rfd)inii ds=0;,¢,(P) — Jvrftiads. (13)
Substitution of (13) into (11) yields the weak formulation of the momentum equations:
0 do; ¢,
u:—u. dQ =69, d.(P) — —tds — T.,—1dQ.
p quu, 40 = 03, 6(P)—0 J it ds L i d (14)
The weak formulation of the continuity equation (2) reads
ou.
f Pl 1o PN (15)
a 0x;

for all test functions g which are square integrable over Q.
The kinematic condition (5a) has not been imposed in the weak formulation (14). Its weak
formulation is

j g ds =0 (16)
Tr

for all test functions y which are square integrable over I, as well as their first-order derivatives. In
the sequel it will become clear why this choice has been made for the test functions y.

4. LINEARIZATION OF THE WEAK FORMULATION

Because free boundary problems are non-linear, the equations must be linearized with respect to
the position of the free boundary, velocity and pressure. The first basic idea of the TLM is to
linearize the continuous form of the weak formulation as was done previously.!%-1*-1# In this way
the TLM may be considered as a variant of Newton’s method applied to the continuous problem.
This is in contrast to the classical method of Newton which performs a linearization of the discrete
form of the free boundary problem. The second essential point of the TLM is to take account of the
boundary conditions at the free boundary in order to simplify the linearization of the weak
formulation. It will be shown that the influence of the free boundary can be reduced to boundary
integrals.

Let I';(h) be the position of the free boundary determined by the function h(x) and let T';(h,) be an
estimate of this position, corresponding to the function hy(x). The distance between I'((h) and
TI'¢(hy) in the normal direction of I'¢(hy) is denoted by «(s) (see Figure 2).

Because of the essential boundary condition for the position of the free boundary given in
Q, we have

2(Q)=0. a7

By writing down the boundary conditions at I",, it was assumed that the outlet I, is parallel
to the y axis. In order to keep the endpoint of I'; at I, we take into account the segment P'P”.
P” is the point P replaced over a distance a(P) in the normal direction of I';(hy) and P’ is
lying at T',. The length of P'P” is denoted by S(P) (see Figure 2). So we have

T()=QP  and  Ty(hy)=QP. (18)
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Figure 2. Free boundary [';(h) and an approximation I';(h,)

4.1. Linearization of the surface integrals

The linearization of the surface integrals with respect to the position of the free boundary is
simple. In general we have

j Sx)dQ= j S(xydQ + j af(s)ds + o{a)*, (19)
k) (ko) T'e(ho)

where Q(h) and Q(h,) denote the domains determined by I';(h) and I'y(h,) respectively.
Using (19), the linearization of the convective terms in (14) with respect to the position of the free
boundary becomes

é
o d)iujau,-dﬂ =p o;u ’(3 —u; dQ~+—pJr
J

Q(h)

0
zqu,.ujé;ui ds + o(a). (20
J

Q(ho) (ho)

Because of the kinematic condition (5a) at the free boundary, we have

Uilreho) = Uijlee + O(@) = O(0). 1)
This implies

0 ( 0 0

U U, (e )n;— A + (et )t > 22
< 10x; >rf(h0) . 10x; . Xj  /Irecho) @)

= <u t iu ) + O(a).

77ds ™ ) lreno) '

Substitution of (22) into (20) reduces (20) to
p o;u ’E) udQ pf Piu— udQ—I—pf aut¢> uds+o(oc) (23)
Q) Q(ho) ox Triho)

In a similar way the stress terms in (14) can be linearized with respect to the position of the free
boundary. Using (19), this yields

8¢1 J 0¢; j 0¢;
T,—dQ= T;,—dQ + o Ty;—ds + o(a). 24
f Q) Jax ame  OX rho) - 0%; ) @9

*By o{x) we mean o(«, do/ds, d?a/ds?). The same applies to the O(x) symbol.
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In general we have

Tl thoy = [(Tigmm ) min; + (Tt )t + (Ttm)ngt; e,

+ (Tt t)t:t; ] rpng + O(@). (25)

The traction conditions (5b, c) at the free boundary and the symmetry of the stress tensor imply that
Tijlrene = L6/RYnn; ey + [(Tt ittt rgng) + O(@). (26a)

= [(6/R)yn;1; Nreng) + L(Tijtjt) it lreng + O@) (26b)

Substitution of (26b) into (24) gives

5¢ j 6¢. J ad)
T,—dQ= T,,7/—dQ+o o—n; ds
.[ Qgh) g 0x; Qe 0X; Lethoy 0% ]R

J

do;
+J;{(hw ( p+2ut; Iy ) P ——ds + o(x), 27)

where (3) has been used.
Using (19) and du,/dx; = O(a) at T'¢(hy), the linearization of the continuity equation (15) with
respect to the position of the free boundary becomes

f ik To Y j /2440 + o(@), (28)
Q(h) ﬁx Qe 0%

13

4.2. Linearization of the kinematic condition and of the surface tension terms

In order to linearize the boundary integrals in the weak formulation (14), (15) and (16), the
following elementary relations are used:

ds' = (1 _ %) ds + o(a), (29)
d a\d
Es—’z(l +~§>d—s+o(a), (30)
i doct + 31
n=n 4 o(a), (31
t=t+ d—(xn + o(x). (32)
ds

For the notation we refer to Figure 2. Quantities without a prime denote quantities at I'¢(h,);
primed quantities refer to I';(h).

Using (29) and (31), the linearization of the kinematic condition (16) with respect to the position
of the free boundary reads

.[rr(h)x Himids' = Jrr(ho)x<u o, S“ ><n —%t,)(l _%> ds — B(P)(xu;m;)(P) + ofa). (33)

In (33) the relation y’ = x is used because the test functions y for the position of the free boundary
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are defined at I'; only. With (12), rearranging (33) leads to

du.
f ¥ uinids = J xu;n;ds + J chininjds
T'e(h) Tetho) Tehoy  O%;
d
- au—(ait;) ds — B(P)(xu;n,)(P) + o(). (34)
Ce(ho) ds
Partial integration of the third term on the right-hand side and substitution of (17) vields
Pt it Aot aui
Y uinids = yu;n;ds + xom—{(nmn; +t;t;)ds
0x; I
Te(h) Ce(ho) Ie(ho) j
dx
+ oty ds — a(P) (i) (P) — B(P)(xuim;)(P) + o (@) 35)
Te(ho)
Because n;n; + t;t; = d,;, du;/0x; = O(x) and u;n; = O(a) at I'e(h), (35) can be simplified to
d
J yuin;ds = J xu;n;ds + J auitil ds — a(P)(yu;t;)(P) + o(x). (36)
) Te(ho) Tt(ho) ds
Because of the boundary condition (7a), we have
t;(P)=9;; + O(). (37
Substitution of (37) into (36) gives
d
J yuin,ds = J qu;n;ds + J auiti—x ds — a(P)(yu; 0, )(P) + o(x). (38)
Te(h) Te(ho) Ti(ho) ds

Note that in the derivation of (38) it has been assumed that the test functions y have square
integrable first-order derivatives.
Using (29), (30) and (32), the linearization of the term

do’
J t; ¢,‘ ds’
rew 48

in {3.5) becomes

d do a\d 00, o
t) tds’ = t+—m 1+ ) —{ ¢+ “N1—=]d
fmm ld5'¢l ’ jmm( '+d5nl)< +R>d5<¢ aa" >( R> ’

d¢
- ﬁ(P)(z,.HS—>(P) +o(a). (39)

Rearranging (39) yields

d de; d 5¢i>
ti——¢ids = ti—ds+ L—| o ds
J e dS ¢ J. Tetho) S J Tetho) ds( on

+ f n 4o, d—“ds — ﬁ(P)(tf(%)(P) + o(a). (40)

i
Loty ds ds
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Partial integration of the second term on the right-hand side and substitution of (17) and (12) gives

¢l d¢l. dd
1 7 ¢lds = Jv l d + ni—-‘——ds
j Tt (h) d Tetho) S Iethoy OS5 ds

- frf(ho) a%ninj% do+ a(P)(ti%%>(P) - ﬁ(P)(tl%>(P) + 0(0‘)' (41)

Xj

The extrapolation of the term §;; ¢;(P’) in (14) reads

9 do;

0, ¢i(P) = l1<¢>(P)+a(P) (P)—B(P)—— (P)>+0(0<) 42)

The relations (37), (41) and (42) lead to the following linearization of the surface tension terms with
respect to the position of the free boundary:

084 BUP) — o f (4145 = 06, 6(P) — 0 f (Pias
Fe(hy Ie(ho) 4S8
dg, dot 09;,
—0 n——-—ds+o oM ds +o(a 43
J rehy s ds j Teo)  0%; "R @ )

4.3. The total linearization of the free boundary problem

Using (23), (27) and (43) the linearization of the momentum equations (14) with respect to the
position of the free boundary can be written as

0 09,
p i —u; dQ + J o, u 'd + f T, dQ
amy O%; g Fr(ho) it ds Qo) jax
Ju do; d¢; do
+ p+2ut; > —tds+o j n————ds 44
j Tt (ho) < Tds ) ds ety ds ds @9
=00; p;(P)— aJ z‘i%ds + ofx).
Tethoy  dS

In (44) a linearization with respect to the unknowns u; and p has not yet been carried out. The
convective terms are linearized as described in Reference 15. When higher-order terms are
neglected, the total linearization of the momentum equations becomes

0 0 du?
p (bi(u —ul + uf —u)dQ+pj oult,p——ds
f Q(ho) lox; e Tetho) i ds

0; J ( > d¢; J d¢,; da
+ T, —dQ + + 2ut; ds+o n—— s
J Q(ho) Jax T¢ (ho) 4 Hi 7 ds Trtho)  OS ds

0 J d¢;
= u? L dQ + aé;, (P t;——ds, 45
PJQ(hD)ti) 1%, 1$:(P)— oo s (45)

where
w=ud+6u;, and p=p°+dp

u® and p® are estimates of the velocity and pressure respectively.
When higher-order terms are neglected, the totally linearized continuity equation (28) is
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j da-0 (46)
Qo) 0%;
and the total linearization of the kinematic condition (38) reads
d
j yu;n;ds + J ou) til ds — a(P)6;, (u?)(P) = 0. 47)
It (ko) Te(ho) ds

Note that in the totally linearized weak formulation (45), (46) and (47) the influence of the
geometrical unknown « is restricted to the free boundary. This means that the terms associated
with o can be evaluated using boundary integrals.

4.4. Algorithm

The totally linearized weak formulation (45), (46) and (47) is discretized using a (triangular) finite
element method of standard Galerkin type. The test functions ¢, g and y are replaced by

! 0 . .
o=(5)  e=(5)  a-i - @

where ¢, ¢' and ' are the basis functions for the velocity, the pressure and the position of the free
boundary respectively. The unknowns are written as

w=ul¢),  p=plg  a=aiyl (49)
The velocity is approximated by continuous extended quadratic polynomials. The pressure is
approximated by piecewise linear polynomials which are not necessarily continuous. The
geometrical unknown « is approximated by continuous quadratic one-dimensional polynomials.
Finally, the discretized continuity equation is replaced by a penalty term. For a complete

description of these techniques, we refer to Reference 15.
The iterative numerical methods consists of the following steps:

Estimate [;(h°),u? and p%a®=0.
u? and p® may be found by solving the Stokes equations on the fixed domain.

For k:=0,k+ 1 while |a** | > ¢ or [[u**! —u¥|| > ¢ do:

k+1 Lk+1

Solve u¥*! p**1 and o** ! by solving the discretized form of the equations (45), (46) and (47).
A penalty method may be applied for the elimination of the pressure

Update the free boundary by
Ff(hk+ 1) = Ff(hk) + O(k+ 1 n

where n is the discrete normal on I'y. At the endpoints of elements the average value of n
between two boundary elements is used.

Generate a new mesh using the updated free boundary [(hF* 1),

The iteration process may be accelerated by correcting the nodal values at the new mesh by
interpolating from the old ones. However, such a step requires extra software for the interpolation
problem.

The solution of u¥*!, p**! and a**' is easily impiemented, because it is equivalent to a
standard Navier—Stokes formulation for the velocity and pressure, supplemented with boundary
integrals which involve the additional geometrical unknown o.

1 1
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The expected rate of convergence of the TLM is at least superlinear, because the equations have
been linearized correctly.

A major advantage of the TLM over the method of Newton—Raphson is the restriction of the
influence of the geometrical unknown to the free boundary. This causes a reduction of the profile
width of the large matrix and of the costs associated with the assembly of the large matrix. This
means that the CPU time required for one iteration decreases. The most important advantage of
the TLM, however, lies in the ease of implementation.

5. NUMERICAL RESULTS

At each iteration the resulting system of linear equations is solved by a profile method.
The following initial estimates are used:

wl=U, ud=0, p°=0, h°=b)2. (50)

Convergence of the iterative process is determined in terms of the difference between two
successive approximations of the velocity and of the distance between two successive approxim-
ations of the position of the free boundary. The iterative process is said to have converged when

[u®* ) —u®j <1073 and la® D], <1073, (51)

where |||, denotes the maximum norm in the discrete space.

A series of simulations for different values of Re and Ca is performed. The results are compared
with those of Engelman,® Dupret!! and Omodei® in Table I. The parameter of practical interest is
the die-swell percentage r,, defined by

r, = 100[h(L,) — h(0)1/h(0). (52)

The present results are obtained with a mesh consisting of 309 elements (including 15 line
elements), a total of 1290 velocity unknowns and 31 {ree boundary unknowns. No interpolation
(step 4) has been carried out. Figures 3 and 4 show the streamlines for Re=1, Ca™ ' =04 and
Re =300, Ca™! =00 respectively.

When Ca™! = 0-0 it can be shown that in the first iteration, owing to the initial estimates (50), a
zero appears on the main diagonal of the large matrix. The results in Table I with Ca™! = 0-0 are
obtained by using a value of 1073 for Ca™! in the first iteration.

Table I
Present method Engelman Dupret Omodei
Re Ca!
Number of r ry Ts rs
iterations
0-0 00 5 19-28 — 15-56 19-0
10 0-0 4 19-17 1897 19-59 19-1
04 4 16-88 1667 1692 166
16 4 1176 11-58 11-65 11-4
36 4 7-50 73 7-41 64 (1 osc)
4-0 04 4 1549 1547 15-69 15-5
16 4 12-44 12-34 1241 122
24 4 10-67 10-57 10-62 104 (4 o0sc)
180 2:222 5 1-25 1-31 1:35 13 (fosc)
4-444 5 1-95 2:00 2:02 22 (L osc)
750 2-0 6 — 1121 — 1116 -~ 1092 — 1048 (% osc)
300-0 0-0 6 — 1524 — 1524 — —15-52
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y=1.0wm /
y=0 _|
x=-3.5 >:=O x=20.0
Figure 3. Re=10,Ca" ' =04
V=1 2 0 oy
y=0
x=-3.5 x=0 x=20.0

Figure 4. Re =300, Ca™ ! =00

In order to verify the mesh dependence of the convergence of the iterative procedure, we have run
the same problem for Re =1 and Ca™! = 04 on three different meshes:

mesh 1: 96 elements, 370 velocity unknowns and 15 free boundary unknowns
mesh 2: 368 elements, 1444 velocity unknowns and 31 free boundary unknowns
mesh 3. 1440 elements, 5704 velocity unknowns and 63 free boundary unknowns.

Meshes 1 and 2 both took five iterations to get {|«* " || < 10~ 3; mesh 3 only needed four iterations.
Clearly, the speed of convergence of the method does not depend on the mesh size; on the contrary,
the finest mesh with a smooth solution required the least number of iterations.

As can be seen from Table L, our results are in close agreement with those of Engelman, Dupret
and Omodei. The oscillations reported in the results of Omodei are absent in our results. It is
hardly possible to compare the required number of iterations, because Engelman and Dupret used
the solution from a previous run as the initial solution vector. Using such initial estimates,
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Engelman required two or three iterations and Dupret required six or seven iterations to obtain
convergence.

Owing to the presence of some fluctuations in the convergence factor, it is not clear whether the
rate of convergence of the TLM is linear or superlinear. However, the iteration process always
converges very fast, as can be seen from Table I. A possible cause of the fluctuations lies in the
presence of discretization errors. Owing to these errors, the ultimate discrete solution will not
satisfy exactly the boundary conditions at the free boundary which have been used in the
derivation of the numerical method. This may result in a smaller rate of convergence.

A last experiment is performed in order to investigate the effect of interpolation (step 4). When
Re =00 (Stokes flow) and Ca~' =00 the required number of iterations is four when using
interpolation and five when not using interpolation. This indicates that the interpolation increases
the rate of convergence significantly.

CONCLUSION

In this paper we have derived the total linearization method, a numerical technique for solving
viscous free boundary flow problems by the finite element method. The numerical experiments
show that this iterative method gives accurate results and converges very fast. The main advantage
of the TLM over the Newton—-Raphson algorithm lies in the ease of implementation, while it is very
competitive with regard to the required number of iterations. Although we have restricted our
attention to viscous free boundary flow problems, it seems that the TLM can be applied to general
free boundary problems.
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