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SUMMARY 

In this paper a total linearization method is derived for solving steady viscous free boundary flow problems 
(including capillary effects) by the finite element method. It is shown that the influence of the geometrical 
unknown in the totally linearized weak formulation can be expressed in terms of boundary integrals. This 
means that the implementation of the method is simple. Numerical experiments show that the iterative 
method gives accurate results and converges very fast. 
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1. INTRODUCTION 

In many problems in mechanics and physics the governing partial differential equations are 
defined on domains which are not known a priori. The boundaries of these domains are called free 
boundaries and must be determined as part of the solution. This means that the problem, apart 
from the usual unknown functions, contains additional geometrical unknowns. 

A technologically important category of such free boundary problems is formed by the viscous 
free boundary flow problems, which occur, for example, in capillarity, coating and polymer 
technology. Because of the non-linear character of free boundary problems, almost all solutions to 
be found in the literature are of a numerical nature. 

Concerning steady state free boundary problems, three basic approaches to the numerical 
solution by the finite element method can be distinguished in the literature: 

(1) A fixed mesh is adopted and special techniques are developed to track the free boundary 
through the mesh.' A disadvantage of this technique is that, in general, it is only possible to 
identify the elements in which the free boundary lies, but not its precise position. 
Furthermore, in order to follow the behaviour of the free boundary which undergoes even 
moderate changes of position, it is necessary to add numerical detail throughout a much 
larger part of the region than may actually be required. 
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(2) In the second a p p r ~ a c h ~ , ~  a deforming spatial mesh is used and a three-stage iterative cycle is 
followed. First, a shape of the free boundary is assumed. Secondly, the boundary value 
problem on the resulting domain is solved after disregarding one of the boundary conditions 
at the free boundary. Thirdly, the shape of the free boundary is updated using the previously 
neglected boundary condition. This iterative cycle is repeated until some desired convergence 
criterion is satisfied. This approach suffers from a number of disadvantages. The iterative 
cycle often does not converge, and even when it does, being a fixed point type iteration, it 
converges slowly. Moreover, a new finite element problem must be solved at each iteration. 

( 3 )  The third, more recent a p p r o a ~ h ~ - ~  also involves a deforming mesh but eliminates the 
successive iteration between the free boundary position and the field variables by introducing 
the position of the nodes at  the free boundary directly as degrees of freedom. The non-linear 
equations are then solved using a Newton-Raphson (or a quasi-Newtori9) iterative 
procedure which results in the simultaneous calculation of the position of the free boundary 
and the field variables. The advantage of this method is its second-order (or superlinear for 
the quasi-Newton method) rate of convergence. A disadvantage is that a complete account of 
the variations with respect to the free boundary degrees of freedom must be incorporated into 
the Jacobian of the system of equations. These variations, which involve integrals over a large 
part of the domain, have a non-local character. This means that the method does not fit into 
standard finite element codes, where the coefficient in the equations of an unknown 
belonging to a nodal point is determined completely by contributions over the neighbouring 
elements. This makes the implementation of the method relatively difficult. Another 
disadvantage is that a new finite element problem must be solved at each iteration. 

The aim of this paper is to derive a numerical method, the total linearization method (TLM), 
which is much easier to implement than the Newton-Raphson algorithm while retaining its 
superior convergence properties. It is similar to References 10 and 11, but in this paper it will be 
shown that the influence of the unknown position of the free boundary can be reduced completely 
to boundary integrals. This has great advantages for software implementation. 

The sequel is restricted to the die-swell problem, which serves as a model case for the TLM. 
However, it is possible to apply the TLM to other free boundary problems as well. 

In Section 2 the die-swell problem is described and its mathematical formulation is given. 
In Section 3 the weak formulation of the problem is derived. This weak formulation is linearized in 
Section 4. The numerical method consists of a discretization of this linearized weak formulation. In 
Section 5 the numerical results are shown and compared with those available from the literature. 

2. MATHEMATICAL FORMULATION 

The extrusion of a viscous incompressible jet from a die into an inviscid fluid is of considerable 
rheological importance. It is observed that far downstream the height of the extrudate is different 
from that of the die. This phenomenon is known as die-swell or extrudate swell. 

In this paper it is assumed that the jet is Newtonian and that the flow is steady and two- 
dimensional in a domain Q with boundary (see Figure 1). Furthermore it is assumed that there 
are no external forces. 

The governing equations are 

a a 
Jaxj axj pa.--u. = - T . .  (momentum equations), 

aui/axi = o (continuity equation), 
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2 x=o symmetry axis r x=L 1 
x=-L 

Figure 1. Geometry of the die-swell problem 

where 

(constitutive equation) (3) 

is the stress tensor for a Newtonian fluid with dynamic viscosity p and constant density p. The 
components of the velocity vector are u,, the pressure is denoted by p and dij is the Kronecker 
symbol. At the inlet (width b/2) the velocity distribution is a fully developed Poiseuille flow with 
mean velocity U .  At the outlet it is supposed that the flow is parallel to the x1 axis and that there is 
no diffusive outflow of momentum. At the wall the fluid is assumed to satisfy the no-slip condition. 
We also assume that the flow is symmetric with respect to the Ts boundary. Thus the boundary 
conditions are, apart from those at the free boundary, 

at the inlet Ti: u1 =$U[l  - (2x,/b)*], 

at the outlet To: Tijnjni = 0, 

at the wall r,: u1 = 0, 

at the symmetry axis rs: Mini = 0, 

u2 = 0, (4aN 

( 4 4 )  

( 4 4  

(4g,h) 

U i t i  = 0, 

u2 = 0, 

qjnjti = 0, 
where n, and ti are the components of the normal and tangential vector respectively on the 
boundary r. The orientation of the tangential vector is taken to be clockwise. 

At the free boundary the conditions for a balance of forces must be fulfilled. These are the traction 
conditions for the normal and tangential components of the stress vector. Moreover, in the 
stationary situation the free boundary is a streamline, which leads to the kinematic condition for 
the velocity. When we assume that the pressure of the surrounding inviscid fluid equals zero, the 
boundary conditions at the free boundary Tf are 

Mini = 0 (kinematic condition), ( 5 4  

Tijnjni = o/R (normal stress condition), (5b) 
T. 1J .n I .t. 1 = 0 (54 (tangential stress condition), 

where o is the coefficient of surface tension. The curvature 1/R of the free boundary (R  > 0 at points 
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of the free boundary where R is locally concave) is given by 

1 d2h I[ 1 +  ( ~ ~ l ) 2 - j ” 2  - 

R - dxf 2 

where h(x,) is the distance between the x1 axis and the free boundary. Note that the number of 
boundary conditions at the free boundary is equal to three instead of two, which would be the case 
for a fixed domain problem. This extra boundary condition is necessary because there is an 
additional geometrical unknown: the position of the free boundary. 

Since the position of the free boundary is determined by the solution of a second-order non- 
linear ordinary differential equation, two boundary conditions for the position of the free 
boundary are necessary. These boundary conditions are the vanishing slope at the outflow section 
and the fixed separation point at the wall: 

at the outflow section: dh/dx = 0 in P, (74  

at the wall: h = b/2 in Q. (7b) 

It is also possible to prescribe a different boundary condition at the wall; see, for example, 
References 12 and 13. 

With the characteristic velocity U and the characteristic length b, the following dimensionless 
groups can be formed: 

the Reynolds number Re defined by 

Re = p U b / p  (8) 

Ca = pUu/c~. (9) 

and the capillary number Ca defined by 

Computations have been performed for realistic values of the Reynolds and the capillary number, 
namely Re < 300 and Ca-’ 6 4.444. For these ranges of the characteristic numbers no oscillatory 
solutions are observed. 

3. WEAK FORMULATION 

In order to solve the equations with the appropriate boundary conditions by the finite element 
method, a weak formulation of the problem must be derived. Multiplication of (1) by test functions + = (41, 6JT and integration by parts (Gauss’s theorem) over the domain R results in the following 
weak formulation of the momentum equations: 

Tijnj4ids- lQTj-dR a4i 
axj 

for all test functions 9 which are square integrable over R together with their first-order d.erivatives. 
The test functions 9 must also be equal to zero at r’,uTi and must have vanishing tangential 
component at To and vanishing normal component at Ts. Substitution of the boundary conditions 
(4) and (5b,c) gives: 

The order of the derivatives in the first term on the right-hand side of (1 1) can be reduced by the 
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substitution 
1 dti 
R ds 
- n .  = - 

and by partial integration over T,. The result is, after substitution of the boundary conditions (7), 

1 4iniR ds = di14i(P)- S rf 

Substitution of (13) into (1 1) yields the weak formulation of the momentum equations: 

The weak formulation of the continuity equation (2) reads 

Ja q$dR = 0 

(13) 

for all test functions q which are square integrable over !2. 

formulation is 
The kinematic condition (5a) has not been imposed in the weak formulation (14). Its weak 

jr:uini ds = 0 (16) 

for all test functions x which are square integrable over Tf as well as their first-order derivatives. In 
the sequel it will become clear why this choice has been made for the test functions x. 

4. LINEARIZATION O F  THE WEAK FORMULATION 

Because free boundary problems are non-linear, the equations must be linearized with respect to 
the position of the free boundary, velocity and pressure. The first basic idea of the TLM is to 
linearize the continuous form of the weak formulation as was done previously.’0,’1,14 In this way 
the TLM may be considered as a variant of Newton’s method applied to the continuous problem. 
This is in contrast to the classical method of Newton which performs a linearization of the discrete 
form of the free boundary problem. The second essential point of the TLM is to take account of the 
boundary conditions at the free boundary in order to simplify the linearization of the weak 
formulation. It will be shown that the influence of the free boundary can be reduced to boundary 
integrals. 

Let T,(h) be the position of the free boundary determined by the function h(x) and let Tf(ho) be an 
estimate of this position, corresponding to the function h,(x). The distance between T,(h) and 
Tf(h,) in the normal direction of T,(h,) is denoted by a(s) (see Figure 2). 

Because of the essential boundary condition for the position of the free boundary given in 
Q ,  we have 

By writing down the boundary conditions at To, it was assumed that the outlet To is parallel 
to the y axis. In order to keep the endpoint of Tf at r,, we take into account the segment P’P’‘. 
P” is the point P replaced over a distance u(P) in the normal direction of T,(h,) and P’ is 
lying at r,. The length of P ’ P  is denoted by p(P) (see Figure 2). So we have 

@(Q) = 0. (17) 

rf (h) = QP’ and rAho) = QP. (1 8) 
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Figure 2. Free boundary T,(h) and an approximation T,(ho) 
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4.1. Linearization of the surface integrals 

simple. In general we have 
The linearization of the surface integrals with respect to the position of the free boundary is 

[C2(h{(x) dQ = {Q(ho) f (X)dQ + s af(s)ds + o(cI)*, 119) 
rf(h0) 

where Sl(h) and Q(h,) denote the domains determined by T,(h) and T,(h,) respectively. 

boundary becomes 
Using (19), the linearization of the convective terms in (14) with respect to the position1 of the free 

Because of the kinematic condition (5a) at the free boundary, we have 

ujnjlTf(ho) = u j n j l r f ( h )  + o(CI) = o(CI). 

This implies 

Substitution of (22) into (20) reduces (20) to 

In a similar way the stress terms in (14) can be linearized with respect to the position of the free 
boundary. Using (19), this yields 

* B y  O(K) we mean O(K, du/ds, d2Cr/ds2). The same applies to the O(u) symbol 
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where (3) has been used. 

respect to the position of the free boundary becomes 
Using (19) and dui/8xi = O(a) at T,(h,), the linearization of the continuity equation (15) with 

q-ddR= q-dR + ~ ( t l ) .  s R(ho) a x i  aui s R(h) a x i  aui 

4.2. Linearization of the kinematic condition and of the surface tension terms 

following elementary relations are used: 
In order to linearize the boundary integrals in the weak formulation (14), (15) and (16), the 

d 
- ds' = (1 + ;); + o(a), 

da 
n'= n - - t +  o(a), 

ds 

da 
t' = t + -n + o(a). 

ds 

For the notation we refer to Figure 2. Quantities without a prime denote quantities at T,(h,); 
primed quantities refer to T,(h). 

Using (29) and (31), the linearization of the kinematic condition (16) with respect to the position 
of the free boundary reads 

ds - /?(P)(xuini)(P) + o(c1). (33) 

In (33) the relation x' = x is used because the test functions x for the position of the free boundary 
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are defined at Tf only. With (12), rearranging (33) leads to 
I- n n 

d - J  rr(ho) ds xui-(ati) ds - p(P)(Xuini)(P) + o(c1). 

Partial integration of the third term on the right-hand side and substitution of (17) yields 
n n n 

dX auiti-ds - a(P)(pi t i ) (P)  - B(P)(pini)(P) + o(a). ‘s r d h o )  ds 

(34) 

(35) 

Because n in j  + t i t j  = d,,, dui/dxi = O(a) and uini = O(a) at T,(h,), (35) can be simplified to 

(36) 
dX auiti-ds - ~(P) (~u i t i ) (P )  + ~ ( a ) .  s ds 

p i n i  ds + S ’  rdh) s T d h o )  rr(ho) 
x u:ni ds’ = 

Because of the boundary condition (7a), we have 

t,(P) = di, + O(a). (37) 
Substitution of (37) into (36) gives 

(38) 
dX auiti-ds - a(P)(xuiGi,)(P) + ~(a). s r d h )  s Tdho) s rr(ho) ds 

xuini ds + x’uin; ds’ = 

Note that in the derivation of (38) it has been assumed that the test functions x have square 
integrable first-order derivatives. 

Using (29), (30) and (32), the linearization of the term 

in (3.5) becomes 

Rearranging (39) yields 

d4 .  da 
ni--ds - p(P) 

+ [ r f ( h o )  ds ds 
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Partial integration of the second term on the right-hand side and substitution of (17) and (12) gives 

a4. 1 a L n . n . - d s  + a(P) (P) + o(~1). (41) 
Tf(ho) axj ' I R  

The extrapolation of the term h i ,  4j(P) in (14) reads 

(42) ds 
a4i 4i(P) + a(P)-(P) - an  

The relations (37), (41) and (42) lead to the following linearization of the surface tension terms with 
respect to the position of the free boundary: 

4.3.  The total linearization of the free boundary problem 

position of the free boundary can be written as 
Using (23), (27) and (43) the linearization of the momentum equations (14) with respect to the 

In (44) a linearization with respect to the unknowns ui and p has not yet been carried out. The 
convective terms are linearized as described in Reference 15. When higher-order terms are 
neglected, the total linearization of the momentum equations becomes 

where 

ui = U P  + 6ui and p = po + 6 p  

uo and po are estimates of the velocity and pressure respectively. 
When higher-order terms are neglected, the totally linearized continuity equation (28) is 



360 N. P. KRUYT ETAL. 

q-ddn=O (46) s n(ho) dxi 

and the total linearization of the kinematic condition (38) reads 

(47) 
dX auPti- ds - ~(P)di,(xuP)(P) = 0. s r r (ho)  s r d h o )  ds 

p i n i d s  + 
Note that in the totally linearized weak formulation (45), (46) and (47) the influence of the 

geometrical unknown a is restricted to the free boundary. This means that the terms associated 
with a can be evaluated using boundary integrals. 

4.4. Algorithm 

element method of standard Galerkin type. The test functions 9, q and x are replaced by 
The totally linearized weak formulation (45), (46) and (47) is discretized using a (triangular) finite 

(48) 

where +i, qi and xi are the basis functions for the velocity, the pressure and the position of the free 
boundary respectively. The unknowns are written as 

ui = u i p ,  p = p'q j ,  a = a j x j .  (49) 
The velocity is approximated by continuous extended quadratic polynomials. The pressure is 
approximated by piecewise linear polynomials which are not necessarily continuous. The 
geometrical unknown a is approximated by continuous quadratic one-dimensional polynomials. 
Finally, the discretized continuity equation is replaced by a penalty term. For a complete 
description of these techniques, we refer to Reference 15. 

The iterative numerical methods consists of the following steps: 

Estimate l-,(ho), 
U P  and p o  may be found by solving the Stokes equations on the fixed domain. 

For k : = O , k + l  while j ak+ l1>&or  ) /ukf l -uk/ /  > & d o :  

and po;  a' = 0. 

Solve u:+l, pk+' and ak+ l  by solving the discretized form of the equations (45), (46) and (47). 
A penalty method may be applied for the elimination of the pressure 

Update the free boundary by 

Tf(hk+') = rf(hk) + a k + l n  

where n is the discrete normal on Tf. At the endpoints of elements the average value of n 
between two boundary elements is used. 

Generate a new mesh using the updated free boundary Tf(hk+l). 

The iteration process may be accelerated by correcting the nodal values at the new mesh by 
interpolating from the old ones. However, such a step requires extra software for the interpolation 
problem. 

The solution of u:", p k + '  and ak+' is easily implemented, because it is equivalent to a 
standard Navier-Stokes formulation for the velocity and pressure, supplemented with boundary 
integrals which involve the additional geometrical unknown a. 
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The expected rate of convergence of the TLM is at least superlinear, because the equations have 
been linearized correctly. 

A major advantage of the TLM over the method of Newton-Raphson is the restriction of the 
influence of the geometrical unknown to the free boundary. This causes a reduction of the profile 
width of the large matrix and of the costs associated with the assembly of the large matrix. This 
means that the CPU time required for one iteration decreases. The most important advantage of 
the TLM, however, lies in the ease of implementation. 

5. NUMERICAL RESULTS 

At each iteration the resulting system of linear equations is solved by a profile method. 
The following initial estimates are used: 

u': = u, u; = 0, p o  = 0, ho = b/2. (50) 
Convergence of the iterative process is determined in terms of the difference between two 

successive approximations of the velocity and of the distance between two successive approxim- 
ations of the position of the free boundary. The iterative process is said to have converged when 

11 U(k + 1) - U(k) 11 co < 1 0 - 3 and < (51) 

where 1 1 .  I( co denotes the maximum norm in the discrete space. 
A series of simulations for different values of Re and Ca is performed. The results are compared 

with those of Engelman,8 Dupret" and Omodei3 in Table I. The parameter of practical interest is 
the die-swell percentage r s ,  defined by 

rs = 100[h(L,) - h(O)]/h(O). (52) 
The present results are obtained with a mesh consisting of 309 elements (including 15 line 

elements), a total of 1290 velocity unknowns and 31 free boundary unknowns. No interpolation 
(step 4) has been carried out. Figures 3 and 4 show the streamlines for Re = 1, Ca-' = 0.4 and 
Re = 300, Ca-I = 0.0 respectively. 

When Ca-I = 0.0 it can be shown that in the first iteration, owing to the initial estimates (50), a 
zero appears on the main diagonal of the large matrix. The results in Table I with Ca-' = 0.0 are 
obtained by using a value of for Ca-' in the first iteration. 

Table I 

Present method Engelman Dupret Omodei 
Re Ca-' 

Number of I, rs r s  rs 
iterations 

0.0 0.0 
1.0 0.0 

0.4 
1.6 
3.6 

4.0 0.4 
1.6 
2.4 

18.0 2.222 
4.444 

75.0 2.0 
300.0 0.0 

5 
4 
4 
4 
4 
4 
4 
4 
5 
5 
6 
6 

19.28 
19.17 
16.88 
11.76 
7.50 

15.49 
12.44 
10.67 
1.25 
1.95 

- 11.21 
- 15.24 

- 

18.97 
16.67 
11.58 
7.3 

15.47 
12.34 
1057 
1.31 
2.00 

- 11.16 
- 15.24 

19-56 
19.59 
16.92 
11.65 
7.41 

15.69 
12.41 
10.62 

1.35 
2.02 

- 10-92 
- 

19-0 
19.1 
16.6 
11.4 

15-5 
12.2 
10.4 (+_ OSC) 
1.3 (k OSC) 
2.2 (+ osc) 

6.4 (+ OSC) 

- 10'48 (k OSC) 
- 15.52 
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Figure 3. Re = 1.0, Ca-  = 0.4 

F O  I I 
x=-3.5 x=o XE20.0 

Figure 4. Re = 300, Ca- = 0.0 

In order to verify the mesh dependence of the convergence of the iterative procedure, we have run 

mesh 1: 96 elements, 370 velocity unknowns and 15 free boundary unknowns 
mesh 2: 368 elements, 1444 velocity unknowns and 31 free boundary unknowns 
mesh 3: 1440 elements, 5704 velocity unknowns and 63 free boundary unknowns. 

the same problem for Re = 1 and Cap' = 0.4 on three different meshes: 

Meshes 1 and 2 both took five iterations to get /I czk+ ' )I < mesh 3 only needed four iterations. 
Clearly, the speed of convergence of the method does not depend on the mesh size; on the contrary, 
the finest mesh with a smooth solution required the least number of iterations. 

As can be seen from Table I, our results are in close agreement with those of Engelman, Dupret 
and Omodei. The oscillations reported in the results of Omodei are absent in our results. It is 
hardly possible to compare the required number of iterations, because Engelman and Dupret used 
the solution from a previous run as the initial solution vector. Using such initial estimates, 
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Engelman required two or three iterations and Dupret required six or seven iterations to obtain 
convergence. 

Owing to the presence of some fluctuations in the convergence factor, it is not clear whether the 
rate of convergence of the TLM is linear or superlinear. However, the iteration process always 
converges very fast, as can be seen from Table I. A possible cause of the fluctuations lies in the 
presence of discretization errors. Owing to these errors, the ultimate discrete solution will not 
satisfy exactly the boundary conditions at the free boundary which have been used in the 
derivation of the numerical method. This may result in a smaller rate of convergence. 

A last experiment is performed in order to investigate the effect of interpolation (step 4). When 
Re = 00  (Stokes flow) and Ca-’ = 0.0 the required number of iterations is four when using 
interpolation and five when not using interpolation. This indicates that the interpolation increases 
the rate of convergence significantly. 

CONCLUSION 

In this paper we have derived the total linearization method, a numerical technique for solving 
viscous free boundary flow problems by the finite element method. The numerical experiments 
show that this iterative method gives accurate results and converges very fast. The main advantage 
of the TLM over the Newton-Raphson algorithm lies in the ease of implementation, while it is very 
competitive with regard to the required number of iterations. Although we have restricted our 
attention to viscous free boundary flow problems, it seems that the TLM can be applied to general 
free boundary problems. 
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